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Recap

We can represent most 
of problems as a shortest 
path problem. Optimal solution

Suboptimal solution

Blind search

Informed search

Real-Time Search

State space pruning
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We can represent most 
of problems as a shortest 
path problem.

Blind search

DFS, BFS

Dijkstra

Heavy computation.
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Recap

We can represent most 
of problems as a shortest 
path problem.

g

h

Open
Closed

Concrete 
problem

Simplified 
version

𝑢

𝑣

𝜙(𝑢)

𝜙(𝑣)

Informed search: Using a 
heuristic to guide the 
search

A*

Abstraction of the problem

The ℎ-value can 
be calculated 
on an abstract 
problem.

Help the search effort, but 
some problems can be too 
large.
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Recap Reject the following duplicates
𝐷 = {𝐷𝑅, 𝐷𝐿, 𝑈𝑅, 𝑈𝐿}When the problem is too large, we 

can try to prune the search tree.

Pruning can create suboptimal 
solution.

Detect and 
prune dead-
ends.
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Recap

Or we can use Real-Time search algorithm.
• Suboptimal solution
• Decide the time allowed to the search between each action. 
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• We didn’t discuss problem with adversaries.

• How can we model problem in which you compete with another agent?
• One way is to represent the problem as a game.
• Usually referred as Game Theory.

Adversary Search
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• What difference does it make to search of the optimal solution?
• Adversaries introduce uncertainty.

• You don’t decide of all the actions in the search tree.

Adversary Search

Agent 1

Agent 1

Agent 2
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• In game theory, we are not talking of optimal solution.
• We want to find the optimal strategy.
• What is the difference?

• Optimal strategies result in perfect play.
• The players take actions alternately and independently.

Adversary Search

Agent 1

Agent 1

Agent 2
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• We will focus on algorithms such as negmax and minimax.
• With one pruning strategy: 𝛼𝛽.

• In game theory:
• The search trees are rather depth-bounded than cost-bounded.
• The value are computed with a static evaluation function.
• Why?

Adversary Search
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• Not only problems with adversary agents can be represented this way.
• In nondeterministic or probabilistic environments:

• We include problem where the “adversary” is the unpredictable behavior of nature.
• The outcome of an executed action in a state is not unique.

• The ack of knowledge for modeling the real world precisely.
• Sensors and actuators that are imprecise.
• Etc.

Nondeterministic environments
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• Solutions to nondeterministic problems are not sequences of actions.
• Why?

• Solutions are presented as mappings from state to actions.
• We call it policies.

• It requires state space traversal to return a solution.
• Policy are often represented as value function.

• Assigns a value to each state.

Nondeterministic environments
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• Chess is the typical example for two-player games.

• One of the main successes in AI.

Two-Player Games

© Telegraph Group Unlimited 
1997
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• To select an optimal move in a two-player game, we construct a game tree.
• A node represent a board configuration.
• The root is the current configuration.
• The children are reachable configurations.

Two-Player Games

Agent 1

Agent 1

Agent 2
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• Game theory is an entire field of research.
• We will focus on zero-sum games.

• The win of one player is the loss of the other.

• And games with perfect information.

Two-Player Games
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• The tree is generally too large in two-player games.
• Terminal nodes are evaluated by a heuristic procedure called static evaluation 

function.
• Making decision before knowing the optimal action is similar to real-time 

search.

Game Tree Search

… … …
We truncate 
the tree at a 
certain depth

Terminal node
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• Static evaluator:
• Doesn’t need to be correct.
• But it needs to yield the correct values for terminal positions (Goals).
• And that higher values correlate with better positions.

• There is no notion of admissibility.

Game Tree Search
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• The performance of the algorithm depends on the static evaluation function.

• What is a good static evaluation function?
• Balance between giving an indicative value without excessive computational cost.
• Usually developed by expert in laborious, meticulous trial-and-error experimentation.

• For complex problem, a perfect evaluation function doesn’t exist.

Game Tree Search
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• A first algorithm: negmax.
• The idea is simple:

• We assume that the value of a position for the first agent is the negative of its value for the 
second agent.

• Meaning that we choose a move that maximizes his worst-case return.

Game Tree Search
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Game Tree Search
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Game Tree Search
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Game Tree Search
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Game Tree Search
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What do you think about this result?
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• A second algorithm: minimax

• The idea is similar:
• The tree consists of two different types of nodes.

• The MIN nodes for the player that tries to minimize the payoff.
• The MAX nodes for the players that tries to maximize the payoff.

• The agent try to maximize its payoff during its turn.
• And the adversary try to minimize the payoff of the agent during his turn.

Game Tree Search
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Game Tree Search
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Game Tree Search
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Game Tree Search
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What do you think about this result?
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• The game tree cannot be fully evaluated.
• So, we need to define a maximum depth.

• In practice, the depth that can be explored depends on a time limit.
• The computation time is not known beforehand.

• Usually, you apply an iterative-deepening approach.
• You increase the depth by 2 until the time available is exhausted.

Game Search Tree


